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Temporal Causal Representation Learning
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Temporal Causal Representation Learning

• Dynamic Bayesian Network

• Standard assumptions

• 𝑵-Markov: only variables from the last 𝑁 time steps can cause variables at time 𝑡
• Stationary/Time Invariance: transition model stays the same across time steps
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Temporal Causal Representation Learning

• All causal variables evolve over time and may differ between two time steps
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Temporal Causal Representation Learning
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Temporal Causal Representation Learning

• iVAE [Khemakhem et al., 2020] – temporality as auxiliary variable, parametric assumptions

• DMS [Lachapelle et al., 2022] – graphical assumption (mechanism sparsity), exponential family

• LEAP [Yao et al., 2022ab] – sufficient mechanism variability over regimes/environments

• Properties of Mechanisms [Ahuja et al., 2022] – known functional form of mechanisms

• CITRIS [Lippe et al., 2022] – non-parameteric, known intervention targets

• iCITRIS [Lippe et al., 2023a] – instantaneous effects
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BISCUIT – non-parameteric, arbitrary graphs, unknown binary interactions



BISCUIT: Binary Interactions

Key assumption: Interactions between the agent and causal variables can be described 
                                  by binary variables
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BISCUIT: Binary Interactions
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                                  by binary variables



BISCUIT: Binary Interactions
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Key assumption: Interactions between the agent and causal variables can be described 
                                  by binary variables

• Causal variables can be continuous values, evolving stochastically over time

• Certain interactions cause unknown interventions, changing corresponding mechanisms

• Realistic assumption in many RL environments: 
observational = no agent-variable interaction, 
interventional = agent interacting with variable



BISCUIT: Causal Model
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Figure 2: A representation of our assumptions. Observed variables are shown in gray (X⌧ and R⌧ ) and latent variables in
white. Optional causal edges are shown as dashed lines. A latent causal variable Ct

i has as parents a subset of the causal factors
at the previous time step Ct�1 = {Ct�1

1 , . . . , Ct�1
K }, and its latent binary interaction variable Iti . The interaction variables

are determined by an observed regime variable Rt and potentially by the variables from the previous time step Ct�1 (e.g., in
a collision). The regime variable can be a dynamical process over time as well, for example, by depending on the previous
time step. The observation X⌧ is a high-dimensional entangled representation of all causal variables C⌧ at time step ⌧ .

In this setup, we prove that causal variables are identifi-
able if the agent interacts with each causal variable in a
distinct pattern, i.e., does not always interact with any two
causal variables at the same time. We show that for K vari-
ables, we can in many cases fulfill this by having as few as
blog2 Kc+2 actions with sufficiently diverse effects, allow-
ing identifiability even for a limited number of actions. The
binary nature of the interactions permits the identification
of a wider class of causal models than previous work in a
similar setup, including the common, challenging additive
Gaussian noise model (Hyvärinen et al., 1999).

Based on these theoretical results, we propose BISCUIT
(Binary Interactions for Causal Identifiability). BISCUIT is
a variational autoencoder (Kingma et al., 2014) which learns
the causal variables and the agent’s binary interactions with
them in an unsupervised manner (see Figure 1). In experi-
ments on robotic-inspired datasets, BISCUIT identifies the
causal variables and outperforms previous methods. Fur-
thermore, we apply BISCUIT to the realistic 3D embodied
AI environment iTHOR (Kolve et al., 2017), and show that
BISCUIT is able to generate realistic renderings of unseen
causal states in a controlled manner. This highlights the po-
tential of causal representation learning in the challenging
task of embodied AI. In summary, our contributions are:

• We show that under mild assumptions, binary inter-
actions with unknown targets identify the causal vari-
ables from high-dimensional observations over time.

• We propose BISCUIT, a causal representation learning
framework that learns the causal variables and their
binary interactions simultaneously.

• We empirically show that BISCUIT identifies both the
causal variables and the interaction targets on three
robotic-inspired causal representation learning bench-
marks, and allows for controllable generations.

2 PRELIMINARIES

In this paper, we consider a causal model M as visualized
in Figure 2. The model M consists of K latent causal vari-
ables C1, ..., CK which interact with each other over time,
like in a dynamic Bayesian Network (DBN) (Dean et al.,
1989; Murphy, 2002). In other words, at each time step t, we
instantiate the causal variables as Ct = {Ct

1, ..., C
t
K} 2 C,

where C ✓ RK is the domain. In terms of the causal graph,
each variable Ct

i may be caused by a subset of variables in
the previous time step {Ct�1

1 , ..., Ct�1
K }. For simplicity, we

restrict the temporal causal graph to only model dependen-
cies on the previous time step. Yet, as we show in Appendix
B.3, our results in this paper can be trivially extended to
longer dependencies, e.g., (Ct�2, Ct�1) ! Ct, since Ct�1

is only used for ensuring conditional independence. As in
DBNs, we consider the graph structure to be time-invariant.

Besides the intra-variable dynamics, we assume that the
causal system is affected by a regime variable Rt with arbi-
trary domain R, which can be continuous or discrete of ar-
bitrary dimensionality. This regime variable can model any
known external causes on the system, which, for instance,
could be a robotic arm interacting with an environment. For
the causal graph, we assume that the effect of the regime
variable Rt on a causal variable Ct

i can be described by
a latent binary interaction variable Iti 2 {0, 1}. This can
be interpreted as each causal variable having two mecha-
nisms/distributions, e.g., an observational and an interven-
tional mechanism, which has similarly been assumed in pre-
vious work (Brehmer et al., 2022; Lippe et al., 2022a, 2023).
Thereby, the role of the interaction variable Iti is to select the
mechanism, i.e., observational or interventional, at time step
t. For example, a collision between an agent and an object is
an interaction that switches the dynamics of the object from
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Binary Interactions enable Identifiability
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Figure 3: Binary interactions identify the additive Gaussian
noise model in Equation (1). The plots show the change of
the mean for each variable for a fixed Ct�1 under interac-
tions affecting only one variable (I1 = 1 or I2 = 1), and un-
der joint interactions I12 (I1 = I2 = 1). Ticks on axes show
mean values for each variable, where the mean for (I1 =

0, I2 = 0) lies at the origin. The colors of the ticks match
the interaction color. Left: true causal variables C1 and C2.
Each variable has two possible means after any of the pos-
sible interactions. The effect of the interactions can be de-
scribed by a binary variable per axis. Right: a rotated repre-
sentation. Both Ĉ1 and Ĉ2 have three possible means, which
cannot be described by a binary variable per axis anymore.

be of the same domain as Ct�1 (for instance being contin-
uous). At the same time, for models M in which the con-
dition of Theorem 3.2 can be fulfilled by the same values
of Rt for all Ct�1, we again recover the lower bound of
blog2 K + 2c different values of Rt.

3.2 INTUITION: ADDITIVE GAUSSIAN NOISE

We first provide some intuition on how binary interactions,
i.e., knowing that each variable has exactly two potential
mechanisms, enable identifiability, even when we do not
know which variables are interacted with at each time step.
We take as an example an additive Gaussian noise model
with two variables C1, C2, each described by the equation:

Ct
i = µi(C

t�1, Iti ) + ✏i, ✏i ⇠ N (0,�2
), (1)

where ✏i is additive noise with variance �2, and µi a func-
tion for the mean with µi(Ct�1, Iti = 0) 6= µi(Ct�1, Iti =
1). Due to the rotational invariance of Gaussians, the
true causal variables C1, C2 and their rotated counterparts
Ĉ1, Ĉ2 model the same distribution with the same factor-
ization:

Q2
i=1 pi(C

t
i |Ct�1, Rt

) =
Q2

i=1 p̂i(Ĉ
t
i |Ĉt�1, Rt

).
This property makes the model unidentifiable in many
cases (Hyvärinen et al., 2019; Khemakhem et al., 2020a;
Lachapelle et al., 2022b; Yao et al., 2022a). However, when
the effect of the regime variable on a causal variable Ci can
be described by a binary variable, i.e., Ii 2 {0, 1}, the two
representations become distinguishable. In Figure 3, we vi-
sualize the two representations by showing the means of the

different variables under interactions, which we detail in Ap-
pendix B.6 and provide intuition here. For the original rep-
resentation C1, C2, each variable’s mean takes on only two
different values for any Rt. For example, for regime vari-
ables where I1 = 0, the variable C1 takes a mean that is in
the center of the coordinate system. Similarly, when I1 = 1,
the variable C1 will take a mean that is represented as a pink
(for I1 = 1, I2 = 0) or yellow tick (for I1 = 1, I2 = 1).
In contrast, for the rotated variables, both Ĉ1 and Ĉ2 have
three different means depending on the interactions, making
it impossible to model them with individual binary variables.
Intuitively, the only alternative representations to C1, C2

which can be described by binary variables are permutations
and/or element-wise transformations, effectively identifying
the causal variables according to our identifiability class.

3.3 IDENTIFIABILITY RESULT

When extending this intuition to more than two variables,
we find that systems may become unidentifiable when the
two distributions of each causal variable, i.e., interacted and
not interacted, always differ in the same manner. Formally,
we denote the log-likelihood difference between the two
distributions of a causal variable Ct

i as �(Ct
i |Ct�1

) :=

log p(Ct
i |Ct�1, Iti = 1) � log p(Ct

i |Ct�1, Iti = 0). If this
difference or its derivative w.r.t. Ct

i is constant for all values
of Ct

i , the effect of the interactions could be potentially
modeled in fewer than K dimensions, giving rise to models
that do not identify the causal model M.

To prevent this, we consider two possible setups for ensuring
sufficient variability of �(Ct

i |Ct�1
): dynamics variability,

and time variability. We present our identifiability result
below and provide the proofs in Appendix B.

Theorem 3.3. An estimated model cM = hĝ, f̂ , !̂, Ĉi iden-
tifies the true causal model M = hg, f,!, Ci if:

1. (Observations) cM and M model the same likelihood:

pcM(Xt|Xt�1, Rt
) = pM(Xt|Xt�1, Rt

);

2. (Distinct Interaction Patterns) Each variable Ci in M
has a distinct interaction pattern (Definition 3.2);

and one of the following two conditions holds for M:

A. (Dynamics Variability) Each variable’s log-likelihood
difference is twice differentiable and not always zero:

8Ct
i , 9Ct�1

:
@2

�(Ct
i |Ct�1

)

@(Ct
i )

2
6= 0;

B. (Time Variability) For any Ct 2 C, there exist K + 1

different values of Ct�1 denoted with c1, ..., cK+1 2 C,
for which the vectors v1, ..., vK 2 RK+1 with

vi =
h
@�(C

t
i |C

t�1=c1)
@Ct

i
· · · @�(C

t
i |C

t�1=cK+1
)

@Ct
i

iT

are linearly independent.

• Knowing each variable has only two mechanisms helps identify difficult cases

• Example: Additive Gaussian Noise   –   𝐶!" = 𝜇! 𝐶"#$, 𝐼!" + 𝜖!, 𝜖!~𝒩 0, 𝜎%

• Both true and rotated variables model the same distribution, but under interventions, only the true 
variables have two means



Identifiability Assumptions

• Assumption 2: interaction variables of different causal variables are 
not deterministic functions of each other

• Implies that two variables are not always interacted with at the same time

• Distinct interaction patterns

• If the interaction variables 𝐼!" are independent of 𝐶"#$,  only requires 
𝐥𝐨𝐠𝟐𝑲 + 𝟐 actions/values of 𝑅"

• Example: agent with random policy

BISCUIT: Causal Representation Learning from Binary Interactions

13



Identifiability Assumptions

• Assumption 3: Causal Relations can be resolved over time 
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Identifiability Assumptions

• Assumption 4: The causal mechanisms vary sufficiently over time or on interactions

• Prevents cases like interventional and observational distribution being identical

• Supports many common setups like additive Gaussian noise models or more complex distributions
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BISCUIT: Identifiability Results

Assumption 1: Interactions between agent and causal variables can be described 
                             by binary variables

Assumption 2: All causal variables have different interaction patterns

Assumption 3: Causal Relations can be resolved over time 

Assumption 4: The causal mechanisms vary sufficiently over time or on interactions
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Identifiability Result
The causal variables can be identified up to permutation and element-wise transformations.



BISCUIT: Causal Model (Reminder)
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Figure 2: A representation of our assumptions. Observed variables are shown in gray (X⌧ and R⌧ ) and latent variables in
white. Optional causal edges are shown as dashed lines. A latent causal variable Ct

i has as parents a subset of the causal factors
at the previous time step Ct�1 = {Ct�1

1 , . . . , Ct�1
K }, and its latent binary interaction variable Iti . The interaction variables

are determined by an observed regime variable Rt and potentially by the variables from the previous time step Ct�1 (e.g., in
a collision). The regime variable can be a dynamical process over time as well, for example, by depending on the previous
time step. The observation X⌧ is a high-dimensional entangled representation of all causal variables C⌧ at time step ⌧ .

In this setup, we prove that causal variables are identifi-
able if the agent interacts with each causal variable in a
distinct pattern, i.e., does not always interact with any two
causal variables at the same time. We show that for K vari-
ables, we can in many cases fulfill this by having as few as
blog2 Kc+2 actions with sufficiently diverse effects, allow-
ing identifiability even for a limited number of actions. The
binary nature of the interactions permits the identification
of a wider class of causal models than previous work in a
similar setup, including the common, challenging additive
Gaussian noise model (Hyvärinen et al., 1999).

Based on these theoretical results, we propose BISCUIT
(Binary Interactions for Causal Identifiability). BISCUIT is
a variational autoencoder (Kingma et al., 2014) which learns
the causal variables and the agent’s binary interactions with
them in an unsupervised manner (see Figure 1). In experi-
ments on robotic-inspired datasets, BISCUIT identifies the
causal variables and outperforms previous methods. Fur-
thermore, we apply BISCUIT to the realistic 3D embodied
AI environment iTHOR (Kolve et al., 2017), and show that
BISCUIT is able to generate realistic renderings of unseen
causal states in a controlled manner. This highlights the po-
tential of causal representation learning in the challenging
task of embodied AI. In summary, our contributions are:

• We show that under mild assumptions, binary inter-
actions with unknown targets identify the causal vari-
ables from high-dimensional observations over time.

• We propose BISCUIT, a causal representation learning
framework that learns the causal variables and their
binary interactions simultaneously.

• We empirically show that BISCUIT identifies both the
causal variables and the interaction targets on three
robotic-inspired causal representation learning bench-
marks, and allows for controllable generations.

2 PRELIMINARIES

In this paper, we consider a causal model M as visualized
in Figure 2. The model M consists of K latent causal vari-
ables C1, ..., CK which interact with each other over time,
like in a dynamic Bayesian Network (DBN) (Dean et al.,
1989; Murphy, 2002). In other words, at each time step t, we
instantiate the causal variables as Ct = {Ct

1, ..., C
t
K} 2 C,

where C ✓ RK is the domain. In terms of the causal graph,
each variable Ct

i may be caused by a subset of variables in
the previous time step {Ct�1

1 , ..., Ct�1
K }. For simplicity, we

restrict the temporal causal graph to only model dependen-
cies on the previous time step. Yet, as we show in Appendix
B.3, our results in this paper can be trivially extended to
longer dependencies, e.g., (Ct�2, Ct�1) ! Ct, since Ct�1

is only used for ensuring conditional independence. As in
DBNs, we consider the graph structure to be time-invariant.

Besides the intra-variable dynamics, we assume that the
causal system is affected by a regime variable Rt with arbi-
trary domain R, which can be continuous or discrete of ar-
bitrary dimensionality. This regime variable can model any
known external causes on the system, which, for instance,
could be a robotic arm interacting with an environment. For
the causal graph, we assume that the effect of the regime
variable Rt on a causal variable Ct

i can be described by
a latent binary interaction variable Iti 2 {0, 1}. This can
be interpreted as each causal variable having two mecha-
nisms/distributions, e.g., an observational and an interven-
tional mechanism, which has similarly been assumed in pre-
vious work (Brehmer et al., 2022; Lippe et al., 2022a, 2023).
Thereby, the role of the interaction variable Iti is to select the
mechanism, i.e., observational or interventional, at time step
t. For example, a collision between an agent and an object is
an interaction that switches the dynamics of the object from
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BISCUIT: Architecture
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BISCUIT: Architecture

• Loss function:

ℒ" = −𝔼'! ("|*" log 𝑝+ 𝑥" 𝑧" + 𝔼'! ("#$|*"#$ 𝐾𝐿 𝑞, 𝑧"|𝑥" ||𝑝- 𝑧"|𝑧"#$, 𝑅"

• Prior structure:

𝑝- 𝑧"|𝑧"#$, 𝑅" =?
!

𝑝- 𝑧!" 𝑧"#$, 𝑓!(𝑅", 𝑧"#$

BISCUIT: Causal Representation Learning from Binary Interactions
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BISCUIT: Learning Binary Variables
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• Prior 𝑝(𝑧!"|𝑧"#$, B𝐼!")
• -𝐼"# = 𝑓"(𝑧#$%, 𝑅#)



BISCUIT: Learning Binary Variables
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• Prior 𝑝(𝑧!"|𝑧"#$, B𝐼!")
• -𝐼"# = 𝑓"(𝑧#$%, 𝑅#)

• Option 1: Marginalizing

• 𝑝 𝑧"# 𝑧#$%, -𝐼"# = 𝑝 -𝐼"# = 0|… 𝑝 𝑧"# 𝑧#$%, 0 +

                                      𝑝( -𝐼"# = 1|… )𝑝 𝑧"# 𝑧#$%, 1

• Converges to 𝑝 𝑧"# 𝑧#$%, 0 = 𝑝 𝑧"# 𝑧#$%, 1

𝒛𝒕$𝟏

Prior 1Prior 0

𝑝 𝑧"# 𝑧#$%, -𝐼"#



BISCUIT: Learning Binary Variables
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• Prior 𝑝(𝑧!"|𝑧"#$, B𝐼!")
• -𝐼"# = 𝑓"(𝑧#$%, 𝑅#)

• Option 1: Marginalizing

• Option 2: Gumbel Sigmoid

• -𝐼"# = GumbelSigmoid 𝑓" 𝑧#$%, 𝑅#

• High variance causes local minima 

𝒛𝒕$𝟏 𝑹𝒕

𝑓"(… )

Prior

𝑝(𝑧"#|𝑧#$%, -𝐼"#)

Gumbel



BISCUIT: Learning Binary Variables
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• Prior 𝑝(𝑧!"|𝑧"#$, B𝐼!")
• -𝐼"# = 𝑓"(𝑧#$%, 𝑅#)

• Option 1: Marginalizing

• Option 2: Gumbel Sigmoid

• Option 3: Continuous Relaxation

• -𝐼"# = tanh (! )"#$,+"

,

• Smooth optimization

• Decrease temperature over training

𝒛𝒕$𝟏 𝑹𝒕

𝑓"(… )

Prior

𝑝(𝑧"#|𝑧#$%, -𝐼"#)

tanh



VAE: Competing Losses
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AE+NF: Splitting Objectives
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AE+NF: Splitting Objectives
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Experiments
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Synthetic Environment CausalWorld iTHOR



Synthetic Environments
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• Evaluated on synthetic dataset with 
additive Gaussian noise model

• Identifies causal variables well, also 
under mininal bound of interactions



CausalWorld – Robotic Trifinger
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• Tri-finger robot interacting with its environment and objects

• Causal variables include object position, frictions, colors, etc.

• Action: 9-dimensional motor angles (3 per finger)

• BISCUIT identifies causal variables accurately 

Accuracy of learned causal variables
(higher is better / lower is better)



CausalWorld – AE + NF
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Ground Truth 𝛽-VAE BISCUIT – AE + NFExample Sequence



CausalWorld – Learned Interactions
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Figure 2: A representation of our assumptions. Observed variables are shown in gray (X⌧ and R⌧ ) and latent variables in
white. Optional causal edges are shown as dashed lines. A latent causal variable Ct

i has as parents a subset of the causal factors
at the previous time step Ct�1 = {Ct�1

1 , . . . , Ct�1
K }, and its latent binary interaction variable Iti . The interaction variables

are determined by an observed regime variable Rt and potentially by the variables from the previous time step Ct�1 (e.g., in
a collision). The regime variable can be a dynamical process over time as well, for example, by depending on the previous
time step. The observation X⌧ is a high-dimensional entangled representation of all causal variables C⌧ at time step ⌧ .

In this setup, we prove that causal variables are identifi-
able if the agent interacts with each causal variable in a
distinct pattern, i.e., does not always interact with any two
causal variables at the same time. We show that for K vari-
ables, we can in many cases fulfill this by having as few as
blog2 Kc+2 actions with sufficiently diverse effects, allow-
ing identifiability even for a limited number of actions. The
binary nature of the interactions permits the identification
of a wider class of causal models than previous work in a
similar setup, including the common, challenging additive
Gaussian noise model (Hyvärinen et al., 1999).

Based on these theoretical results, we propose BISCUIT
(Binary Interactions for Causal Identifiability). BISCUIT is
a variational autoencoder (Kingma et al., 2014) which learns
the causal variables and the agent’s binary interactions with
them in an unsupervised manner (see Figure 1). In experi-
ments on robotic-inspired datasets, BISCUIT identifies the
causal variables and outperforms previous methods. Fur-
thermore, we apply BISCUIT to the realistic 3D embodied
AI environment iTHOR (Kolve et al., 2017), and show that
BISCUIT is able to generate realistic renderings of unseen
causal states in a controlled manner. This highlights the po-
tential of causal representation learning in the challenging
task of embodied AI. In summary, our contributions are:

• We show that under mild assumptions, binary inter-
actions with unknown targets identify the causal vari-
ables from high-dimensional observations over time.

• We propose BISCUIT, a causal representation learning
framework that learns the causal variables and their
binary interactions simultaneously.

• We empirically show that BISCUIT identifies both the
causal variables and the interaction targets on three
robotic-inspired causal representation learning bench-
marks, and allows for controllable generations.

2 PRELIMINARIES

In this paper, we consider a causal model M as visualized
in Figure 2. The model M consists of K latent causal vari-
ables C1, ..., CK which interact with each other over time,
like in a dynamic Bayesian Network (DBN) (Dean et al.,
1989; Murphy, 2002). In other words, at each time step t, we
instantiate the causal variables as Ct = {Ct

1, ..., C
t
K} 2 C,

where C ✓ RK is the domain. In terms of the causal graph,
each variable Ct

i may be caused by a subset of variables in
the previous time step {Ct�1

1 , ..., Ct�1
K }. For simplicity, we

restrict the temporal causal graph to only model dependen-
cies on the previous time step. Yet, as we show in Appendix
B.3, our results in this paper can be trivially extended to
longer dependencies, e.g., (Ct�2, Ct�1) ! Ct, since Ct�1

is only used for ensuring conditional independence. As in
DBNs, we consider the graph structure to be time-invariant.

Besides the intra-variable dynamics, we assume that the
causal system is affected by a regime variable Rt with arbi-
trary domain R, which can be continuous or discrete of ar-
bitrary dimensionality. This regime variable can model any
known external causes on the system, which, for instance,
could be a robotic arm interacting with an environment. For
the causal graph, we assume that the effect of the regime
variable Rt on a causal variable Ct

i can be described by
a latent binary interaction variable Iti 2 {0, 1}. This can
be interpreted as each causal variable having two mecha-
nisms/distributions, e.g., an observational and an interven-
tional mechanism, which has similarly been assumed in pre-
vious work (Brehmer et al., 2022; Lippe et al., 2022a, 2023).
Thereby, the role of the interaction variable Iti is to select the
mechanism, i.e., observational or interventional, at time step
t. For example, a collision between an agent and an object is
an interaction that switches the dynamics of the object from
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iTHOR

• Kitchen environment with 10 causal variables
• Cabinet (open/closed)
• Microwave (open/closed)
• Microwave (on/oY)
• Egg (position, broken, cooked)
• Plate/potato (position)
• 4x Stove burner (on/oY, burning)
• Toaster (on/oY)

• Actions represented as x-y coordinate of a 
randomly sampled object pixel

BISCUIT: Causal Representation Learning from Binary Interactions
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iTHOR – Interaction Maps

• Visualize learned interaction variables by the x-y locations they are active

• Each causal variable shown in different color

BISCUIT: Causal Representation Learning from Binary Interactions
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iTHOR – Triplet Evaluation

BISCUIT: Causal Representation Learning from Binary Interactions
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⊕

Encoder

Encoder

Latent vectors

Combined 
latents

Decoder

Input Image 1

Input Image 2

Generated output

Goal
Open Cabinet

Turn on Microwave
Keep other variables fixed

• Test compositional generation ability of latent space

• Suitable across various identifiability classes



iTHOR – Triplet Evaluation

BISCUIT: Causal Representation Learning from Binary Interactions
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iTHOR – Triplet Evaluation

BISCUIT: Causal Representation Learning from Binary Interactions
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iTHOR – BISCUIT Demo

BISCUIT: Causal Representation Learning from Binary Interactions
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Demo: https://colab.research.google.com/github/phlippe/BISCUIT/blob/main/demo.ipynb 

https://colab.research.google.com/github/phlippe/BISCUIT/blob/main/demo.ipynb


Conclusion

• BISCUIT identifies causal variables from interactive environments

• Key assumption: binary interaction variables describe agent-causal variable interactions

• Applicable to a variety of robotic and embodied AI environments

• Ability to ‘imagine’ by performing latent interventions

• Identifies actions to perform interventions  

Project website and demo: phlippe.github.io/BISCUIT/

BISCUIT: Causal Representation Learning from Binary Interactions
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https://phlippe.github.io/BISCUIT/
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